Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Food and Fermentation Industries ; 49(8):335-341, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20238658

ABSTRACT

Sulforaphane is an isothiocyanate metabolite of cruciferous plants, which obtain antioxidant, anticancer and anti-COVID-19 functions. However, due to its unstable structure, it is easy to de-composite, thus the utilization of sulforaphane is difficult. With the advancement of the preparation of sulforaphane, the purpose of inhibiting sulforaphane inactivation and improving its utilization is expected to be realized. The existing preparation technologies are mainly myrosinase enzymatic hydrolysis, microbial transformation and chemical synthesis. Myrosinase enzymatic hydrolysis mainly utilizes endogenous myrosinase, exogenous myrosinase and heterologously expressed myrosinase. Myrosinase enzymatic hydrolysis technology not only obtain the advantage of high preparation efficiency, but also obtain the disadvantage that the activity of myrosinase cannot be stabilized. Microbial transformation mainly utilizes the function of microorganisms to convert glucosinolates to sulforaphane, and obtain the advantages of easy control of reaction conditions and low cost. Chemical synthesis mainly includes de novo synthesis and semi-synthesis, and semi-synthesis is the most widely used method at present. Chemical synthesis obtains the advantages of easy control of reaction conditions, but chemical synthesis techniques have the problems of high risk and low yield. This research reviews the preparation technology of sulforaphane, aiming to provide a reference for the efficient utilization of sulforaphane and its product development.

2.
Horticulturae ; 9(2):226, 2023.
Article in English | ProQuest Central | ID: covidwho-2268858

ABSTRACT

The nutritional quality and biomass of various sprouts can be enhanced by Zn and red-blue light, especially the Brassica sprouts. However, the combined effects of this two on sprouts are rarely reported. In this study, different Zn concentrations (0, 1.74, 3.48, 10.43 and 17.39 mM) were combined with two ratios of red-blue light-emitting diodes (LEDs) (R: B = 1:2, 1R2B;R: B = 2:1, 2R1B, at 70 μmol m−2 s−1 PPFD, 14 h/10 h, light/dark) to investigate their mutual effects on the growth, mineral elements, and nutritional quality in flowering Chinese cabbage sprouts (FCCS). Fresh weight, dry weight, contents of organic Zn, soluble sugar, vitamin C, total flavonoids, total polyphenol, FRAP (ferric ion-reducing antioxidant power) and DPPH (radical inhibition percentage of 1,1-diphenyl-2-picrylhydrazyl) were significantly increased by Zn supplement (10.43 and 17.39 mM) and 2R1B, while hypocotyl length and moisture content were decreased remarkably by Zn supplement. Total glucosinolates contents in the sprouts increased dramatically under 2R1B compared with 1R2B, while photosynthetic pigments contents decreased. Heat map and principal component analysis showed that 2R1B + 17.39 mM Zn was the optimal treatment for the accumulation of biomass and health-promoting compound in FCCS, suggesting that a suitable combination of light quality and Zn supplement might be beneficial to zinc-biofortified FCCS production.

3.
JOURNAL OF APPLIED BOTANY AND FOOD QUALITY ; 95:85-+, 2022.
Article in English | Web of Science | ID: covidwho-1911935

ABSTRACT

During the COVID-19 pandemic urban gardening became popular across the globe. Leafy vegetables supplement the daily diet and contribute to consumers health. Within the last decade kale (Brassica oleracea var. sabellica L.) gained popularity in urban gardening. However, shading due to unfavourable cardinal directions may reduce plant growth and accumulation of health-promoting secondary plant metabolites such as polyphenols, carotenoids and glucosinolates in kale. We compared authentic urban gardening conditions for kale grown in all four cardinal directions of a residential building. The overall concentration of carotenoids did benefit from sun exposed growing locations, including indoor cultivation behind UV light filtering glass windows, while concentrations of nutritionally important lutein did not differ among the locations and their altered growth conditions regarding abiotic stressors such as sun exposure, temperature, and water consumption. Total concentration of phenolics profited the most from direct sunlight but is severely reduced behind glass windows. Overall, satisfying growth rates of kale were achieved under all applied conditions, encouraging outdoor urban gardening with kale plants even in shaded locations.

4.
Science of Advanced Materials ; 14(1):162-174, 2022.
Article in English | Web of Science | ID: covidwho-1819953

ABSTRACT

The novel coronavirus (2019-nCoV) triggered a worldwide rise in the prevalence of the coronavirus outbreak (COVID-19) and surfaced as a universal wellbeing matter. Analogous with SARS-CoV and MERS-CoV, the main 3-chymotrypsin-alike cysteine protease (3CL(Pro)) virus enzyme that manages the replications of 2019-nCoV and regulates its existence span, possibly will be considered like a medication break through focus. In this study, the binding potential of 10 glucosinolates (Glu) having a variety of structures was studied with the catalytic dyad remains of 2019-nCoV-3CL(Pro ) by molecular cutting developing. The outcomes have shown that Glu containing sinigrin (SN) have been shown to be realistically bound to the 2019-nCoV-3CL(Pro) receptor and catalytic dyad binding sites (Cys145 and His41). Our simulation results have shown that sinigrin have a potential activity against 2019-nCoV and could be further used for drug production and optimization in the battle against COVID-19. In details, SN-SARS-CoV-2-3CL(Pro)-facilityacted without exhibit whichever observable variations, with reference to the constancy of Glu-enzyme complexes by means of average RMSD of 1.5 +/- 0.02 angstrom. Meanwhile, the ordinary behavior of a SN-SARS-CoV-2-3CL(Pro) complex continued as compact and steady during (50 ns) MD simulations. Current investigation has revealed that Glu with a specific structure could be successful against COVID-19 as natural components.

5.
Daru ; 30(1): 245-252, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1664547

ABSTRACT

INTRODUCTION: The high mortality rate in severe cases of COVID-19 is mainly due to the strong upregulation of cytokines, called a cytokine storm. Hyperinflammation and multiple organ failure comprise the main clinical features of a cytokine storm. Nrf2 is a transcription factor which regulates the expression of genes involved in immune and inflammatory processes. Furthermore, Nrf2, as a master regulator, controls the activity of NF-κB which binds to the promoter of many pro-inflammatory genes inducible of various inflammatory factors. Inhibition of Nrf2 response was recently demonstrated in biopsies from patients with COVID-19, and Nrf2 agonists inhibited SARS-CoV-2 replication across cell lines in vitro. Glucosinolates and their hydrolysis products have excellent anti-inflammatory and antioxidant effects via the Nrf2 activation pathway, reduction in the NF-κB activation, and subsequent reduced cytokines levels. CONCLUSION: Accordingly, these compounds can be helpful in combating the cytokine storm associated with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome , Glucosinolates , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Dietary Supplements , Glucosinolates/therapeutic use , Humans , Hydrolysis , NF-E2-Related Factor 2 , NF-kappa B/metabolism
6.
Environ Sci Pollut Res Int ; 29(18): 26775-26791, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1544548

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a rapidly growing pandemic that requires urgent therapeutic intervention. Finding potential anti COVID-19 drugs aside from approved vaccines is progressively going on. The chemically diverse natural products represent valuable sources for drug leads. In this study, we aimed to find out safe and effective COVID-19 protease inhibitors from a library of natural products which share the main nucleus/skeleton of FDA-approved drugs that were employed in COVID-19 treatment guidelines or repurposed by previous studies. Our library was subjected to virtual screening against SARS-CoV Main protease (Mpro) using Molecular Operating Environment (MOE) software. Twenty-two out of those natural candidates showed higher binding scores compared to their analogues. We repurpose these natural products including alkaloids, glucosinolates, and phenolics as potential platforms for the development of anti-SARS-CoV-2 therapeutics. This study paves the way towards discovering a lead used in the treatment of COVID-19 from natural sources and introduces phytomedicines with dual therapeutic effects against COVID-19 besides their original pharmacological effects. We recommend further in vitro evaluation of their anti-COVID-19 activity and future clinical studies.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Phytochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL